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1 Introduction

Much of modern thinking in particle physics about what should be expected to replace

the Standard Model at LHC energies is driven by the idea that the Standard Model is

an effective description of some unknown, more fundamental, theory describing physics at

shorter distance scales, λ = 1/M , than we can presently measure. This picture captures

much of what makes the Standard Model most attractive: it consists of the most general

set of interactions that are possible among the observed particles (plus the Higgs boson)

that involve only couplings having (engineering) dimension (mass)d for d ≥ 0 [1]. This is

just what one would expect to describe any physics in the more fundamental theory that

is unsuppressed by powers of 1/M .
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What does not fit easily into this picture, however, are the only two interactions allowed

by the model that have dimensionful couplings:

Lrel = −√−g
[

m4 − µ2H†H
]

, (1.1)

whereH is the Higgs doublet.1 The problem with these is that agreement with observations

requires the scales m and µ to be much smaller than M , unlike what usually happens in low-

energy effective theories. Since such suppression of so-called relevant operators is unusual,

this difficulty is made into a virtue by using it as a clue to guide our search for whatever

the new physics is that ultimately replaces the Standard Model. Since both of the terms in

eq. (1.1) arise in the scalar potential, one is led by these kinds of considerations to regard

systems that can handle and suppress contributions to scalar potentials as particularly

interesting candidates for the Standard Model’s short-distance (UV) completion. All of

the most promising theories proposed so far — supersymmetric theories, models without

scalar fields and extra-dimensional scenarios — are of this type.

It is the purpose of this paper to try to understand in more detail one of the remarkable

ways extra-dimensional models can suppress ultra-violet contributions to scalar potentials.

As as been noticed by many authors — first within the context of cosmic string back-

reaction [2] in four dimensions, and then again for brane-world models in codimensions

one [3] and two [4, 5] — extra-dimensional field equations allow codimension two branes

in extra dimensions to have precisely flat induced geometries. This, despite having sig-

nificant nonzero homogeneous energy densities (or tensions), and being coupled to higher

dimensional gravity. By contrast, if there were no extra dimensions, a nonzero space-filling

constant energy density would inevitably curve the geometry of spacetime when coupled to

gravity. This observation that the induced brane geometry can be decoupled from its on-

brane energy density provides one of the very few potential ways forward for understanding

how it is that the observed acceleration of the universe points to an energy density, m4,

with m so much smaller than almost all of the other scales found in the Standard Model [6].

Although the existence of higher dimensional solutions whose 4D curvature is decoupled

from the brane tension is suggestive, what has been missing to date is a quantitative study

of precisely how (or if) the scalar potential in the low-energy effective theory manages to

remain insensitive to the integrating out of high-energy scales. In particular if a higher

dimensional scalar field couples to the brane in addition to gravity, it is important to

understand under what circumstances the low energy action describing the system has

interesting special properties, similar to the ones previously mentioned in the case of pure

gravity. In this paper we provide part of this missing analysis, by explicitly integrating out

(at one loop) a very massive brane field on a codimension-2 brane, to see how this affects the

low-energy effective theory. We use for these purposes a scalar tensor theory in a D = d+2-

dimensional bulk coupled in a fairly generic way to a d-dimensional codimension-2 brane,

for which the matching rules between brane properties and near-brane bulk asymptotics

have recently been worked out, following an effective approach, in [7].

1We take a broad-minded point of view, and include the couplings of the metric in what we call the

Standard Model, as is also consistent with the modern interpretation of General Relativity also as a low-

energy effective field theory.
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We find the following results

• Integrating out a brane field of mass M generically contributes an amount Md to the

tension,2 T2, of a space-filling codimension-2 brane in d+ 2 dimensions, and so is not

suppressed relative to naive expectations.

• This tension does not necessarily imply a similarly large contribution to the effec-

tive potential, U2, in the d-dimensional effective theory that governs the spacetime

curvatures at energies well below the Kaluza-Klein scale. When the bulk is inte-

grated out at the classical level, these results are consistent with the existence, in

extra-dimensional theories, of flat solutions with nonzero tensions.

• By examining theories with scalar fields in the bulk we are able to see that the

situations where the low-energy curvatures can be small are also those for which the

codimension-2 brane has little or no coupling to the bulk scalar, in agreement with

the known situations where large tensions coexist with flat on-brane geometries.

• In order to contrast the behaviour of codimension-2 sources with those of the better-

studied codimension-1 branes, we use a representation of the codimension-2 brane in

terms of a small regularizing codimension-1 brane that encircles the position of the

codimension-2 object at a small radius ρb [7, 16]. From the point of view of the low-

energy effective theory, on scales much larger than ρb, the main difference between

such a regularizing brane and a macroscopic codimension-1 brane is that the radius

ρb is not a macroscopically observable variable, and it will therefore be integrated out.

As we will explain, at the classical level this amounts to self-consistently determine ρb
in terms of the various fields in the low-energy theory by solving the brane junction

conditions, including those of gravity.

• It is this relaxation of ρb that, in certain circumstances, is ultimately responsible for

the suppression of the contribution of the codimension-2 tension to the low-energy

on-brane curvature. In general, ρb adjusts itself to ensure that the effective potential,

U2, defined below the Kaluza scale is completely determined by the brane tension,

T2(φ), regarded as a function of the bulk scalar evaluated at the brane position

(given explicitly by eq. (2.17), of later sections). In particular, as we will explain, the

solution for U2 strictly vanishes when T ′
2 = dT2/dφ = 0, as required by what is known

about the back-reaction of codimension-2 pure tension branes. More generally, if T ′
2

is nonzero but small, then U2 is suppressed by factors of order κ2T ′
2, where κ is the

higher-dimensional Planck scale in the bulk.

The above results arise in a calculation which evaluates loop effects due to integrating

out brane fields at the quantum level, but only integrates out bulk fields (and in particular

ρb) within the bulk classical approximation. A crucial question therefore asks how bulk

loops might change the above picture. We close the paper by taking a step in this direction

2The subscript ‘2’ here is meant to emphasize that it is the tension of a codimension-2 brane, and not

of the regularizing codimension-1 brane that is introduced at intermediate points in the analysis.

– 3 –



J
H
E
P
0
6
(
2
0
0
9
)
0
1
4

by estimating the contributions of the most dangerous (short-wavelength) bulk loops within

the more specific context where the bulk is six-dimensional and supersymmetric. This

extends earlier calculations of the ultraviolet sensitivity of bulk loops far from the brane, to

include the effects of loops that are close to the branes. We find that, for the contributions

examined, supersymmetry can suppress bulk loops to be of order the Kaluza-Klein scale,

again representing a significant suppression to the low-energy potential U2.

We organize our presentation as follows. §2 starts by reviewing the brane-bulk match-

ing conditions for codimension-2 branes, as recently derived in ref. [7]. This section in

particular describes how the codimension-2 brane can be regularized in terms of a small

codimension-1 brane, and relates the properties of each to the other. §3 then adds a mas-

sive field to the brane and integrates it out at one loop, keeping track of how this loop

changes its interactions with the bulk fields. §4 finally combines the results of the earlier

sections, by specializing them to the simple case where the brane-bulk couplings are expo-

nentials in the bulk scalar. The size of both the codimension-2 brane tension, T2, and the

low-energy effective scalar potential, U2, are computed, both before and after integrating

out the massive brane field. We conclude in §5.

2 The framework

We work for illustrative purposes within a higher-dimensional scalar-tensor theory that

provides the simplest context for displaying our calculations. Since our interest is in inte-

grating out heavy matter on codimension-2 branes, we focus primarily on the situations of

space-filling d-dimensional branes sitting within a D = (d+2)-dimensional bulk spacetime.

The particular case of d = 4 and D = 6 is of particular interest, as the simplest ‘realistic’

case within which the impact of higher-dimensional ideas on technical naturalness might

be relevant in practice.

2.1 Bulk field equations

Consider the following bulk action, governing the interactions between the D = (d + 2)-

dimensional metric, gMN and a real scalar field, φ:3

SB = − 1

2κ2

∫

dDx
√−g

[

gMN

(

RMN + ∂Mφ∂Nφ
)]

+ SGH , (2.1)

where RMN denotes the Ricci tensor built from gMN and SGH = κ−2
∫

∂M dD−1x
√−γ K,

denotes the Gibbons-Hawking action [9], which is required when using the Einstein field

equations in the presence of boundaries (as we do below). Here γmn denotes the induced

metric on the boundary, and K = γmnKmn is the trace of the boundary’s extrinsic curva-

ture. (Since we are also interested in the case of higher-dimensional supergravity, which also

involve Maxwell and Kalb-Ramond fields, and nontrivial scalar potentials, V = V0 e
φ [10],

in section §4 we discuss the extent to which these features change our results.)

The corresponding field equations are

�φ = 0 and RMN + ∂Mφ∂Nφ = 0 . (2.2)

3We use a ‘mostly plus’ signature metric and Weinberg’s curvature conventions [8].
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In the immediate vicinity of a codimension-2 brane we imagine the bulk fields to take

an axially (transverse) and maximally (on-brane) symmetric form

ds2 = dρ2 + ĝmn dxmdxn

= dρ2 + e2B dθ2 + e2W gµν dxµ dxν , (2.3)

where ρ denotes proper distance transverse to the brane, θ ≃ θ+2π is the angular coordinate

encircling the brane, and the functions B, W and φ are functions of ρ only. The on-

brane metric, gµν , is a d-dimensional maximally symmetric Minkowski-signature metric

depending only on xµ.

Accidental bulk symmetries. The field equations, eqs. (2.2), enjoy two accidental

symmetries, whose interplay with brane interactions will be explored in the following:

• Axion symmetry: The axion symmetry is defined by

φ→ φ+ ζ , (2.4)

for constant ζ, with gMN held fixed.

• Scaling symmetry: A scaling symmetry of the field equations is

gMN → λ2gMN , (2.5)

with constant λ, and φ held fixed.

Both of these symmetries take solutions of the classical field equations into distinct

new solutions of the same equations, but need not be respected by the couplings of the

bulk fields to any space-filling source branes, whose properties we next describe.

2.2 Brane properties

We imagine the bulk to be sprinkled with a number of space-filling codimension-2 source

branes, whose back-reaction dominates the asymptotic near-brane behaviour of the bulk

fields. In a derivative expansion, their low-energy brane-bulk interactions are governed

by the action

Sb = −
∫

ddx
√−γ

[

T2(φ) +X2(φ) ∂µφ∂µφ+ Y2(φ)R + · · ·
]

, (2.6)

where γµν denotes the induced metric on the brane and the subscript ‘2’ emphasizes

that the brane has codimension 2 (by contrast with a codimension-1 branes to be con-

sidered shortly). The ellipses represent further terms that arise at low energies in a deriva-

tive expansion.

This brane action breaks the axion symmetry, eq. (2.4), if any of the coefficients, T2,

X2 or Y2, depend on φ. The tension term, T2, also breaks the scaling symmetry, eq. (2.5),

unless T2 is constant. The higher-derivative terms always break the scaling symmetry,

but can preserve a diagonal combination of eqs. (2.4) and (2.5) corresponding to λ2 = eaζ

provided X2, Y2 ∝ eaφ.

– 5 –
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At still lower energies the dynamics of the bulk-brane system is normally dominated by

very light modes, that are massless within the purely classical approximation. These include

the low-energy d-dimensional metric, gµν , possibly together with a variety of moduli, ϕ,

coming from φ or the metric components. The dynamics of these modes below the Kaluza-

Klein (KK) scale is governed by a different effective d-dimensional theory,

Seff = −
∫

ddx
√−g

[

Ueff(ϕ) +
1

2κ2
4

R+ · · ·
]

, (2.7)

obtained by integrating out all bulk KK modes as well as any heavy brane states. At the

purely classical level this action is obtained by eliminating these states as functions of the

light fields using their classical equations of motion, and so depend on the details of the

classical bulk action.

In the classical approximation the contribution of the branes to Seff takes a simple

form. The accidental symmetries guarantee the existence (classically) of a massless scalar

mode corresponding to shifts of φ, so φ(ρ) = ϕ + δφ(ρ). The low-energy potential, Ueff ,

turns out to arise as a sum over local terms, each evaluated at the position of a brane [7]:4

Ueff(ϕ) =
1

d

∑

b

U2[φ(ρb;ϕ)] . (2.8)

The fact that U2 (defined more explicitly below) can vanish even when T2 6= 0 is what allows

codimension-2 branes having nonzero tension to have flat on-brane geometries [4, 5].

2.3 Brane-bulk matching

It is the quantities T2(φ) and U2(φ) that dictate the near-brane behaviour of bulk fields,

through the matching conditions. For our purposes, assuming the brane of interest to be

situated at ρ = 0, these become (see [7, 12] for a complete discussion):

lim
ρ→0

(

eB+dW ∂ρφ
)

=
κ2T ′

2

2π

lim
ρ→0

(

eB+dW∂ρW
)

=
κ2U2

2πd
(2.9)

lim
ρ→0

(

eB+dW∂ρB
)

= 1 − κ2

2π

[

T2 +

(

d− 1

d

)

U2

]

.

Codimension-1 regularization. A drawback of eqs. (2.9) is the dependence of the

right-hand-side on quantities like φ(ρ = 0), that need not be well-defined if φ diverges as

one approaches the brane positions. This can be dealt with by defining an alternative,

renormalized, codimension-2 brane action, as discussed in [7, 13, 14] by elaborating on the

work [15]. On the other hand, for the aim of the present work, it is convenient to simply

regularize this divergence through the artifice of replacing the codimension-2 brane with a

very small cylindrical codimension-1 brane, situated at ρ = ρb [7, 12, 16], with the interior

geometry (ρ < ρb) capped off with a smooth solution to the bulk field equations (see

4A similar result, summarized in appendix C, holds less trivially for gauged, chiral supergravity, despite

the appearance there of a scalar potential and nontrivial background fluxes [12].
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Figure 1. The regularized near-brane cap geometry.

figure 1). We use capital latin indices, xM , to describe all D = d + 2 coordinates at once,

reserving lower-case indices, xm, for coordinates on the (d+ 1)-dimensional codimension-1

brane, and greek indices, xµ, for the d codimension-2 brane directions.

The action on this codimension-1 brane is chosen to be

Sreg = −
∫

dd+1x
√−γ

[

T1(φ) + Z1(φ) ∂mσ ∂mσ + · · ·
]

, (2.10)

where σ is a massless, on-brane mode, whose presence is included in order to dynamically

support the brane radius at nonzero ρ against its propensity to collapse gravitationally.

This is done by choosing for its classical solution a configuration that winds around the

brane, σ = nθ, for n a nonzero integer.

In terms of this action the codimension-2 tension is obtained directly by dimensional

reduction in the θ direction. Using eB(ρb) = ρb, this leads to

T2(φ, ρb) = 2πρb

[

T1(φ) +
n2

2ρ2
b

Z1(φ)

]

. (2.11)

As for the codimension-2 action, this preserves the axionic symmetry, eq. (2.4), if T1 and Z1

are φ independent. However, because ρb → λρb there is no choice for T1 which preserves the

scaling symmetry, eq. (2.5). The diagonal combination with λ = e−aζ survives if T1 ∝ eaφ

and Z1 ∝ e−aφ.

The brane contribution, U2, to the low-energy potential can also be computed in terms

of T1 and Z1 by classically integrating out the bulk KK modes explicitly. This integration

involves evaluating the classical action at the classical solution, with the result regarded

as a function of the low-energy zero modes, gµν and ϕ. Keeping in mind that the only

nonzero part of the action, eq. (2.1), is in this case the Gibbons-Hawking term, SGH , and

that this receives opposite-sign contributions from outside and inside the codimension-1

brane, one obtains a result that depends only on the jump conditions [17] evaluated at the

brane position

Seff(ϕ) =

(

SB +
∑

b

Sreg

)

φcl(ϕ),gcl
MN

(ϕ)

=
∑

b

{

Sreg −
1

κ2

∫

dd+1x
√

−ĝ
[

K
]

b

}

=
∑

b

{

Sreg −
1

d

∫

dd+1x
√

−ĝ ĝmnTmn
}

, (2.12)

– 7 –
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where
[

X
]

b
= limǫ→0

[

X(ρb+ǫ)−X(ρb−ǫ)
]

.
√−ĝ Tmn = 2 δSreg/δĝmn is the stress tensor

of the codimension-1 brane, whose independent components are

Tµν = −
(

T1 +
n2

2ρ2
b

Z1

)

ĝµν and Tθθ = −
(

T1 −
n2

2ρ2
b

Z1

)

ĝθθ . (2.13)

Eq. (2.12) implies each brane contributes to the very-low-energy theory as if its

codimension-1 Lagrangian density were

L̂reg = Lreg −
2

d
ĝmn

δSreg

δĝmn
. (2.14)

Once compactified in the θ direction, this gives the following brane contribution to U2 [7]:

U2(φ, ρb) = −2πρb

[

T1(φ) − n2

2ρ2
b

Z1(φ)

]

= 2πρb g
θθTθθ . (2.15)

Finally, the expression for ρb(φ) is obtained by integrating the (ρρ) Einstein equation,

which expresses the ‘Hamiltonian’ constraint for integrating the bulk field equations in the

ρ directions [12, 18]:

U2

[

4π

κ2
− 2T2 −

(

d− 1

d

)

U2

]

−
(

T ′
2

)2 ≃ 0 , (2.16)

and the approximate equality involves dropping terms that are of order ρ2
bR relative to

those displayed. Such curvature terms are always negligible in the limit where the brane

size, ρb, is much smaller than the bulk radius of curvature to which it gives rise.5

Eq. (2.16) states that the solution ρb(φ) adjusts itself to ensure that U2(φ) =

U2(φ, ρb(φ)) is not independent of T2(φ) = T2(φ, ρb(φ)). Expanding in powers of κ2, we find

κ2U2

2π
=

(

d

d− 1

)







(

1 − κ2T2

2π

)

−
[

(

1 − κ2T2

2π

)2

−
(

d− 1

d

)(

κ2T ′
2

2π

)2
]1/2







≃ 1

2

(

1 − κ2T2

2π

)−1(
κ2T ′

2

2π

)2

+ · · · . (2.17)

The second line here emphasizes that the root is chosen to ensure that U2 vanishes in the

limit when T ′
2 → 0, since this limit corresponds to rugby-ball type geometries [4, 5] having

flat on-brane spacetimes (U2 = 0) with nonzero but φ-independent tensions (T ′
2 = 0). It

is simple to see that all the corrections in higher powers of κ2, contained in the dots, are

proportional to T ′
2.

Solving eq. (2.16) to lowest order in κ2 leads to the condition U2 ≃ 0, and so

ρ2
b(φ) ≃ n2Z1(φ)

2T1(φ)
, (2.18)

5Earlier authors often use this constraint to determine R, but as argued in ref. [7], this is not appropriate

in the effective-field-theory limit, where the brane is much smaller than the scales associated with the

bulk geometry.
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showing that, in the limit in which gravity is weak, ρb adjusts itself to try to set U2 to zero.

Using this solution, we can integrate out the quantity ρb, and the codimension-2 brane

tension becomes

T2(φ) = T2(φ, ρb(φ)) ≃ 2π|n|
√

2T1(φ)Z1(φ) . (2.19)

This expression then allows U2 to be computed from eq. (2.16) or (2.17) to next-to-leading

order in κ2, giving [7]

U2(φ) = U2(φ, ρb(φ)) ≃ κ2

4π

(

T ′
2

)2
=

(

πn2κ2

2

)

[

(T1Z1)
′]2

T1Z1
. (2.20)

As mentioned earlier, the function U2(φ) vanishes when the brane tension T2 does not

depend on the field φ. Looking at the first of equations (2.9), we see that having T2 be

φ-independent also requires the dilaton derivative to vanish as one approaches the brane.

Since such derivatives naturally vanish when the brane is located in a region where φ has

a constant, or approximately constant, profile in the bulk, it is natural to find that branes

with φ-independent tensions are commonly the sources for geometries having such regions.

This observation will turn out to be useful in the following.

2.4 An example

For later purposes we pause here to record the above steps for an interestingly broad

example. We choose for this purpose the case where T1 and Z1 are exponentials:

T1(φ) = ATe
−atφ and Z1(φ) = AZe

−azφ , (2.21)

and so

T2(φ, ρb) ≃ 2π

[

ρbATe
−atφ +

(

n2AZ

2ρb

)

e−azφ

]

, (2.22)

and

U2(φ, ρb) ≃ −2π

[

ρbATe
−atφ −

(

n2AZ

2ρb

)

e−azφ

]

. (2.23)

In this case the zeroth-order brane size is

ρb0 = |n|
√

AZ

2AT

e−(az−at)φ/2 . (2.24)

Using these, the leading contribution to the codimension-2 brane tension and on-brane

potential then become

T2(φ) ≃ T20(φ) = 2π|n|
√

2ATAZ e
−(at+az)φ/2 , (2.25)

and

U2(φ) ≃ κ2

4π

(

T20
′)2 =

π

2
n2(at + az)

2κ2ATAZe
−(at+az)φ . (2.26)

Recall that these choices always break the scaling symmetry, eq. (2.5), provided at

least one of AT or AZ is nonzero. They respect the axionic symmetry, eq. (2.4), if and

only if at = az = 0. Finally, they preserve a diagonal combination of these two symmetries

if at + az = 0. Notice that in this last case T2 is φ-independent, and so eq. (2.17) shows

U2 = 0 solves the constraint (2.16) to all orders in κ2.
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3 Integrating out a massive brane field

We next investigate the stability of the above considerations to ultraviolet effects on the

brane. The simplest way to do so is to explicitly integrate out a heavy brane-localized field,

and see how the brane-bulk connection changes as a result.

3.1 The brane field

To this end, consider supplementing the brane action with new term describing a massive

real scalar field, ψ. Since our goal is to see how this changes the bulk-brane interaction,

we regard ψ as being localized on the codimension-1 regularized brane, and so take Sreg →
Sreg + S(ψ) with

S(ψ) = −1

2

∫

d(d+1)x
√

−ĝ
[

P (φ)(∂ψ)2 +m2
⋆Q(φ)ψ2

]

. (3.1)

Here m⋆ is a constant having dimensions of mass, and if we adopt z = ρbθ as coordinate

in the periodic direction, then all fields satisfy the boundary condition ψ(z) = ψ(z + L),

with L = 2πρb.

For the purposes of computing quantum corrections, we imagine starting with a clas-

sical solution whose induced metric on the codimension-2 brane is flat, making the metric

on the codimension-1 regularizing brane

ds2 = e2Wbηµν dxµdxν + ρ2
bdθ

2 . (3.2)

It is convenient at this point to re-scale eWb into xµ, so that ds2 = ηmn dxmdxn where

we take the coordinate in the angular direction to be xd = z. As discussed above, such

a flat classical background would arise, for instance, if T1 = ATe
−atφ and Z1 = AZe

−azφ

with az = −at.
Provided P 6= 0 the ψ-particle action always breaks the scaling symmetry, eq. (2.5),

but preserves the axionic symmetry if and only if P and Q are φ-independent. A diag-

onal subgroup of these two symmetries can be preserved when P , Q, T1 and Z1 are all

exponentials,

P (φ) = AP e
−ap φ and Q(φ) = AQ e

−aqφ , (3.3)

provided ap = az = −aq = −at. The effective mass of ψ for observers on the brane is

φ-dependent, given explicitly by

m2(φ) =
m2
⋆Q(φ)

P (φ)
, (3.4)

and so m2 = m2
⋆(AQ/AP )e−(aq−ap)φ when P and Q are exponentials, à la eqs. (3.3).

The stress energy for this heavy scalar is given by

Tmn(ψ) = P (φ)∂mψ∂nψ − 1

2
gmn

[

P (φ)(∂ψ)2 +m2
⋆Q(φ)ψ2

]

, (3.5)

which satisfies

Tmm(ψ) = −
(

d− 1

2

)

P (φ)(∂ψ)2 −
(

d+ 1

2

)

m2
⋆Q(φ)ψ2 (3.6)

in d spacetime dimensions on the codimension-2 brane (with d = 4 being the case of most

direct interest).
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3.2 Quantum contributions

To assess the contribution of quantum effects on the brane, we integrate out ψ by computing

the Gaussian functional integral

exp
[

iΓ(φ, g)
]

=

∫

Dψ exp
[

iS(ψ, φ, g)
]

, (3.7)

so that
∫

Dψ ei[Sreg+S(ψ)] = ei[Sreg+Γ]. Eq. (3.7) may be evaluated by differentiating with

respect to φ, giving

δΓ

δφ
= −1

2

√

−ĝ
[

P ′

P
〈P (∂ψ)2〉 +

Q′

Q
〈m2

⋆Qψ
2〉
]

, (3.8)

where 〈X(ψ)〉 = e−iΓ
∫

DψX(ψ) eiS .

As described in appendix A, the relevant expectation values can be expressed as

〈P (φ)∂µψ∂νψ〉 =
ηµν

2Ld+1

∫ ∞

0

dt

t(d+2)/2
e−λtϑ3(it) = ηµν

I1+d/2(λ)

2Ld+1
, (3.9)

and

〈P (φ)(∂zψ)2〉 = − i

Ld+1

∫ ∞

0

dt

td/2
e−λtϑ′3(it) = −Jd/2(λ)

Ld+1
, (3.10)

and

〈m2
⋆Q(φ)ψ2〉 =

λ

Ld+1

∫ ∞

0

dt

td/2
e−λtϑ3(it) =

λId/2(λ)

Ld+1
, (3.11)

where

λ(φ) =
m2(φ)L2

4π
=
m2
⋆L

2Q(φ)

4πP (φ)
= πρ2

bm
2(φ) . (3.12)

The properties of the functions Iα(λ) and Jα(λ) are spelt out in detail in appendix B. They

satisfy a very useful identity,

〈

P (φ) ∂mψ ∂
mψ +m2

⋆Q(φ)ψ2
〉

=
1

Ld+1

[

d

2
I1+d/2(λ) − Jd/2(λ) + λId/2(λ)

]

= 0 , (3.13)

which (as is proven in appendix A) is a consequence of our use of dimensional regularization.

Quantum fluctuations in ψ contribute to the brane stress-energy tensor, Tmn → Tmn+
〈

Tmn(ψ)
〉

, where

〈

Tmn(ψ)
〉

=
2√−ĝ

δΓ

δĝmn
=
〈

P (φ) ∂mψ ∂nψ
〉

− 1

2
ĝmn

〈

P (φ) (∂ψ)2 +m2
⋆Q(φ)ψ2

〉

=
〈

P (φ) ∂mψ ∂nψ
〉

, (3.14)

which uses the identity, eq. (3.13). Its components evaluate to

〈

Tµν(ψ)
〉

= ηµν
I1+d/2(λ)

2Ld+1

and
〈

Tzz(ψ)
〉

= −
Jd/2(λ)

Ld+1
= −

[

λId/2(λ) + d
2I1+d/2(λ)

]

Ld+1
, (3.15)
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and, again using eq. (3.13), its trace is

〈

Tmm(ψ)
〉

= −
(

d− 1

2

)

〈

P (φ) (∂ψ)2
〉

−
(

d+ 1

2

)

〈

m2
⋆Q(φ)ψ2

〉

=
〈

P (φ) (∂ψ)2
〉

= −
〈

m2
⋆Q(φ)ψ2

〉

= −
λId/2(λ)

Ld+1
, (3.16)

which (naively) vanishes when m⋆ = 0, and so is completely given by any trace anomaly

when this is nonzero. In particular, notice that m⋆ = 0 implies 〈Tmm〉 = 0 when d = 2k is

a positive even integer, since in this case the codimension-1 brane has odd dimension and

so the divergent parts of the above expressions vanish in dimensional regularization (see

appendix A for details).

3.3 Codimension-2 quantities

For the present purposes, of most interest is the contribution of ψ loops to low energy

quantities, so we next seek the loop contribution to the codimension-2 quantities T2 and

U2. This involves repeating their earlier derivation with the replacements Sreg → Sreg + Γ

and Tmn → Tmn + 〈Tmn(ψ)〉.
The most direct means for computing both T2 and U2 then uses their representation as

compactifications of components of the stress tensor — T2 = −LgttTtt and U2 = LgθθTθθ
— which summarize eqs. (2.11), (2.13) and (2.15). These remain true provided Tmn →
Tmn + 〈Tmn(ψ)〉, suggesting that the change generated by ψ loops is

∆T2(φ,L) = L〈Ttt〉 = −
I1+d/2(λ)

2Ld
, (3.17)

and

∆U2(φ,L) = L〈Tzz〉 = −Jd/2(λ)

Ld
= − [λId/2(λ) + d

2I1+d/2(λ)]

Ld
. (3.18)

Notice in particular that the φ-dependence of these quantities (at fixed L) only enters

through the combination m2(φ) ∝ Q/P .

A check on these expressions comes if we instead work directly with the loop contri-

butions to the regularized brane action, Sreg =
∫

dd+1x
√−ĝ Lreg. Writing Sreg + Γ =

∫

dd+1x
√−ĝ (Lreg + ∆Lreg), eq. (3.8) implies

∂∆Lreg

∂φ
=

1

2

[

P ′

P
− Q′

Q

]

〈m2
⋆Qψ

2〉 = − 1

2m2

(

∂m2

∂φ

)

λId/2(λ)

Ld+1
, (3.19)

which uses (P ′/P ) − (Q′/Q) = [ln(P/Q)]′ = −(1/m2)(∂m2/∂φ), eq. (3.11) and eq. (3.13).

Finally, provided ∂m2/∂φ 6= 0 this integrates to

∆Lreg = − 1

2Ld+1

∫ λ

dλ̂ Id/2(λ̂) =
I1+d/2(λ)

2Ld+1
, (3.20)

where the integral is performed using
∫ λ

dλ̂ Iα(λ̂) = −I1+α(λ). Finally, dimensional reduc-

tion gives ∆T2 = −L∆Lreg, in agreement with eq. (3.17).
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Figure 2. The function U2(λ) + ∆U2(λ) vs λ.

Similarly, integrating out the bulk KK modes at the classical level using Sreg + Γ as

the regularized brane action, leads to loop corrections to the effective action for energies

well below the transverse KK scale, as seen by observers residing on the brane. The change

to these due to the ψ loops is

∆Seff = Γ − 1

d

∫

dd+1x
√

−ĝ 〈Tmm〉 , (3.21)

showing that ψ loops enter into this action both by directly changing the brane action, and

by changing the junction conditions relevant to integrating out the bulk fields. Writing

∆Seff =
∫

ddx
√−g ∆Leff gives ∆Leff =

∫

dz
[

∆Lreg − 1
d

√−ĝ 〈Tmm〉
]

, and so

∆Leff =
1

Ld

[

1

2
I1+d/2(λ) +

λ

d
Id/2(λ)

]

=
Jd/2(λ)

dLd
, (3.22)

so using ∆U2 = −d∆Leff agrees with eq. (3.18).

Finally, notice that the derivation of the curvature constraint, eq. (2.16), relating U2

to T2, goes through as before, but with Tmn replaced everywhere by Tmn + 〈Tmn(ψ)〉. This

guarantees that U2 + ∆U2 can be obtained from T2 + ∆T2 by using eq. (2.20), precisely as

U2 can from T2.

The limit mL ≫ 1. Before going further it is instructive to evaluate these for the

asymptotic case where mL ≫ 1, since this is particularly easy to interpret. Appendix B

shows that when λ≫ 1 we have Iα(λ) ≃ λα−1/2Γ
(

1
2 − α

)

, and so

∆T2 ≃ − md+1L

2(4π)(d+1)/2
Γ

(

−1

2
− d

2

)

, (3.23)

and

∆U2 ≃ md+1L

2(4π)(d+1)/2
Γ

(

−1

2
− d

2

)

. (3.24)
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Notice these satisfy ∆U2 = −∆T2, just as would be expected if both arose from a

contribution to the codimension-1 brane tension,

∆T1(φ) ≃ − md+1

2(4π)(d+1)/2
Γ

(

−1

2
− d

2

)

→ m5

120π2
as d→ 4 , (3.25)

where the limit d → 4 uses Γ
(

−5
2

)

= − 8
15

√
π. Indeed, when ψ is very massive compared

with the codimension-1 KK scale, 2π/L = 1/ρb, we expect its quantum effects are well

captured by local contributions to the brane action, starting with ∆Lreg ≃ −∆T1+ (higher

derivative terms). Furthermore, eq. (3.25) agrees with the large-m limit of eq. (3.20).

In the general case eqs. (3.17) and (3.18) predict ∆T2 6= −∆U2, implying they do not

have an interpretation as simple as a contribution to T1.
6 This is because when mL <∼ 1

the wavelengths integrated out are similar to the size of the entire circular direction on

the codimension-1 brane, and so need not depend only on local geometrical quantities.

Their contributions must be local in the transverse dimensions, however, provided that

their wavelength is much smaller than the typical scales set by the transverse geometry.

The limit mL → 0. A second instructive limit corresponds to takingmL→ 0, for which

appendix B shows Iα(0) = 2π
1
2
−α Γ

(

α− 1
2

)

ζ (2α − 1). In this case eqs. (3.17), (3.18) and

(3.20) become

∆T2(φ,L) ≃ ∆U2(φ,L)

d
≃ −L∆Lreg ≃ − 1

π(d+1)/2Ld
Γ

(

1

2
+
d

2

)

ζ (d+ 1)

→ −3 ζ (5)

4π2L4
as d→ 4 . (3.26)

Notice d∆T2 → ∆U2 when mL→ 0, consistent with the result 〈Tmm〉 → 0.

Eliminating ρb. After determining the expressions for ∆T2(φ,L) and ∆U2(φ,L), the

final step amount to eliminate L — or equivalently ρb — in terms of φ by using eq. (2.16).

To leading order in κ2 this involves solving the condition U2(φ,L) ≃ 0, leading to eq. (2.18),

ρ2
b0 ≃ n2Z1/(2T1) in the absence of the quantum ψ contributions.

For the purposes of computing the quantum correction δρ2
b , suppose T1 ≃ Md+1 and

Z1 ≃Md−1 are characterized by a common regularization mass scale M , and so eq. (2.18)

implies L0 = 2πρb0 ≃ 2πn/M . Since for us ρb plays the role of an ultraviolet regulator, our

interest in what follows is in the limit mL0 = 2πρb0m ≃ 2πnm/M ≪ 1 and m/M ≪ 1, in

which case d∆T2(φ, ρb) ≃ ∆U2(φ, ρb) ≃ −c d/(2πρb)d with c = Γ
(

1
2 + d

2

)

ζ(d+1)π−(d+1)/2.

Since in this limit we have

L0T1 ∼ L0

(

n2Z1

ρ2
b0

)

∼ 2πnMd and ∆U2 ∼ d

(2πL2
0)
d/2

∼ dMd

(2π)3d/2nd
, (3.27)

6This is a special case of the more general observation that the radius dependence of Casimir energies

on torii [19] cannot be represented in terms of local curvature invariants.
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it follows that
∣

∣δρ2
b

∣

∣ ≪ ρ2
b0, provided that the inequality (2π)1+3d/2nd+1 ≫ d is satisfied.

Using this observation, we solve U2(φ, ρb) ≃ 0 perturbatively in δρ2
b , to give

δρ2
b

ρ2
b0

≃ − c d

2π2n2Z1(φ)(2πρb0)d−1
= −c d

T1

(

T1

2π2Z1

)(d+1)/2

. (3.28)

With this choice, the leading corrections to T2(φ) become

T2(φ) = T20[φ, ρb0(φ)] +
∂T20

∂ρb
[φ, ρb0(φ)] δρb + ∆T2[φ, ρb0(φ)] + · · ·

= 2π|n|
√

2T1(φ)Z1(φ) − c

(2π|n|)d
[

2T1(φ)

Z1(φ)

]d/2

+ · · · , (3.29)

which uses T20(φ, ρb) = 2πρbT1 + πn2Z1/ρb and so ∂T20/∂ρb ∝ U20(φ, ρb) vanishes when

evaluated at ρb = ρb0(φ). In the previous expression, the dots contain corrections propor-

tional to positive powers of κ2.

Finally, the constraint, eq. (2.16), automatically ensures U2(φ) satisfies eq. (2.17),

and so

U2(φ) ≃ 1

2

(

1 − κ2T2

2π

)−1(
κ2T ′

2

2π

)2

+ · · · , (3.30)

up to higher powers of (κ2T ′
2)

2, with T2(φ) given by eq. (3.29).

4 Technical naturalness

We may now use the above tools to quantify how integrating heavy brane physics modifies

properties of the low-energy world. We ask in particular how symmetry-breaking effects

on the brane modify at low energies the symmetries of the bulk action. We use for this

purpose both the scaling and axionic shift symmetries, eqs. (2.4) and (2.5), of the simplified

bulk theory used for illustrative purposes here, but we have in mind applications to other

symmetries like supersymmetry as well.

4.1 Brane loops

With this in mind we work within the particularly interesting framework of exponential

brane couplings to φ, as described by eqs. (2.21) and (3.3) above: T1 = ATe
−atφ, Z1 =

AZe
−azφ, P = APe

−apφ and Q = AQe
−aqφ. In this case the leading contributions to T2(φ)

and ρb(φ) become

T20(φ) = 2π|n|
√

2ATAZ e
−(at+az)φ/2

and ρb0(φ) = |n|
√

AZ

2AT

e−(az−at)φ/2 , (4.1)

and so U20 ≃ κ2(T ′
2)

2/4π becomes

U20(φ) ≃ πn2

2
κ2(at + az)

2ATAZ e
−(at+az)φ . (4.2)
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The ψ mass, m(φ), is

m(φ) = m⋆

√

AQ

AP

e−(aq−ap)φ/2 , (4.3)

and so

λ0 = πρ2
b0m

2 ≃ πn2m2
⋆

2

(

AZAQ

ATAP

)

e−(az+aq−at−ap)φ . (4.4)

Provided λ0 ≪ 1 the leading correction to the codimension-2 tension due to ψ loops,

eq. (3.29), becomes

∆T2(φ) ≃ − c

(2π|n|)d
[

2AT

AZ

]d/2

e−d(at−az)φ/2 (4.5)

and so

∆U2(φ) ≃ κ2

4π

[

∆T ′
2(φ)

]2 ≃ κ2c2d2(at − az)
2

16π(2π|n|)2d
[

2AT

AZ

]d

e−d(at−az)φ (4.6)

We consider now several important special cases.

The case at = aq := a and az = ap := a+2 b. This choice is motivated by a situation of

practical interest where there exists a frame for which φ appears undifferentiated only as an

overall power of eφ pre-multiplying the entire brane action. That is, Lreg(φ, ∂mφ, gmn) =

e−αφf(∂mφ, ǧmn) for some metric ǧmn = e−2βφgmn, implying at = aq = α + dβ and

az = ap = α+ (d− 2)β, so a = α+ dβ and b = −β.

In this case we have ρb0 ∝ e−bφ and m ∝ ebφ so λ0 ∝ m2ρ2
b0 is φ-independent. Then

T20 ∝ e−(a+b)φ, and the leading quantum correction ∆T2 ∝ edbφ (regardless of whether λ0

is large or small). There are then two special situations of particular interest:

1. The case b = 0. This situation corresponds to it being the bulk Einstein frame for

which the brane action has the form Lreg(φ, ∂mφ, gmn) = e−αφf(∂mφ, gmn). In this

case, if AT ∼ Md+1 and AZ ∼ Md−1 then we have T20 ∝ Mde−aφ while ∆T2 ∝
Md/(2πn)2d is precisely φ-independent. Consequently in this case we have U20 ∼
κ2M2da2e−2aφ, while ∆U2 precisely vanishes to leading order in κ2.

2. The case b = −a. In this situation at = aq = −az = −ap, which is the condition

that the brane action preserves a diagonal combination of the two bulk symmetries,

eqs. (2.4) and (2.5). In this case it is T20(φ) that is φ-independent and so U20 ≃ 0,

while ∆T2 ∝Mde−daφ/(2πn)d and so ∆U2 ∼ κ2a2d2M2de−2daφ/(2πn)2d. In this case

the leading contribution to U2 first arises suppressed both by a loop factor and a

power of κ2Md.

The virtues of both of these last two choices are combined in the most remarkable

situation: the case a = b = 0 (or at = az = ap = aq = 0). This is the simplest choice, for

which the brane does not couple at all to the bulk scalar φ, such as might be required if

the brane couplings must preserve the bulk shift symmetry, eq. (2.4). It also captures the

case of pure gravity, for which there is no scalar field in the bulk to which to couple. Such

branes are known to arise in geometries having a region where the scalar profile is constant

in the extra-dimensions.
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In this case physical scales on the brane, like ρb and m, are φ-independent, as is T2.

And this φ-independence holds provided only that shift-symmetry breaking effects (like

anomalies) are negligible. But because T ′
2 vanishes so robustly, eq. (2.17) shows that the

same is true for U2, which vanishes to all orders in κ (within the approximation of a classical

bulk). This states that the brane tension does not contribute at all towards the low-energy

potential, Ueff , governing the on-brane curvature, much as the geometry produced by a

cosmic string is locally flat in 4 dimensions [2]. Furthermore, on-brane loops do not alter

this property provided that they also do not couple to φ.

4.2 Bulk loops and supersymmetry

A drawback of the preceding discussion is its omission of quantum effects in the bulk.

In general these loops can be problematic, particularly if they break the symmetries of

interest. Although this can be controlled for axionic symmetries, this need not be so for

features of the low-energy action, that are consequences of the bulk scaling symmetry. It

is here that supersymmetry in the bulk can play a helpful role.

Changes due to a supersymmetric bulk. Supersymmetry changes the above analysis

in several important ways, which we briefly summarize in this section (see appendix C for

more details). To keep things concrete we focus on how the above discussion changes

if the bulk is described by chiral, gauged supergravity in six dimensions [10], although

many features generalize to other higher-dimensional supergravities. In this case the action

describing the classical dynamics of the bosonic degrees of freedom has the form

LB√−g = − 1

2κ2
gMN

[

RMN + ∂Mφ∂Nφ
]

− 2g2

κ4
eφ

−1

4
e−φ F aMNF

MN

a − 1

2 · 3! e
−2φGMNPG

MNP , (4.7)

where φ is the 6D scalar dilaton, GMNP , is the field strength for a Kalb-Ramond potential,

BMN , arising in the gravity supermultiplet and F aMN is the field strength for the potential,

AaM , appearing in a gauge supermultiplet. The parameter g is the gauge coupling for a spe-

cific gauge group, and has dimensions of inverse mass. Matter scalars, Φi, could also appear,

but these are set to zero in the above action, as is consistent with their field equations.

An important feature of this system is the existence of many explicit solutions to the

field equations describing compactifications of two of the dimensions whose size is supported

by extra-dimensional gauge fluxes, F a
MN

[5, 11, 20]. For the simplest of these the compact

geometry is that of a 2-sphere, whose radius is fixed in terms of φ by the equations of

motion to satisfy [5, 11]

r2 =
κ2e−φ

4g2
. (4.8)

The value of φ itself is not fixed, despite the presence of a nontrivial scalar potential.

Its undetermined value represents a classically flat direction, whose presence may be un-

derstood as a consequence of a scale invariance having the form of a diagonal combination

of eqs. (2.4) and (2.5): eφ → ω eφ and gmn → ω−1gmn. The existence of this classical
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symmetry is most easily seen from the existence of a frame for which the action has the

form LB = e−2φF(∂Mφ, ǧMN), where ǧMN = eφgMN , since in this frame the symmetry

corresponds to shifting φ with ǧMN held fixed.

Almost all of the compactifications of this theory to 4 dimensions involve singularities

in the extra-dimensional geometry, which can be interpreted as the singularities due to the

back-reaction of space-filling codimension-2 source branes situated about the bulk. The

low-energy action for these branes can be worked out using the same trick used here of a reg-

ularizing codimension-1 brane, with the complication that the Maxwell fields, Aa
M

, must also

satisfy junction conditions at the branes as well as Dirac quantization conditions [12, 16].

In this case the brane respects the scale invariance of the bulk classical field equations

only when T1 = ATe
φ/2 and Z1 = AZe

−φ/2. Another bulk symmetry that is sensitive to

the presence of branes is supersymmetry. Singular sources, as codimension two branes, in

general break supersymmetry in the bulk. The only exception are branes embedded in con-

figurations with constant bulk scalar, and that couple in a very specific way to bulk fields.

We will not elaborate on this interesting topic (see [23] for detailed discussions), but we will

return to discuss the effects of brane supersymmetry breaking at the end of this section.

The contributions of the branes to the very-low-energy action, Leff , can be evaluated

much as was done above by integrating out the bulk KK modes at the classical level, and

this again leads to a remarkably simple result [12] involving only quantities localized at

the branes. There turns out to be a new contribution to Ueff , however, because the bulk

action, eq. (4.7), does not give zero when evaluated at a classical solution. Instead, use of

the Einstein and φ field equations shows that

LB(gcl
MN

, φcl, · · · ) =
1

2κ2
�φcl , (4.9)

which gives a contribution proportional to the jump [∂ρφ]b across the position of each

regularized brane. The result is that the brane contribution to Ueff may be computed

by dimensional reduction, as if the regularized codimension-1 brane action is given (since

d = 4) by [12]

L̂reg = Lreg −
1

2
ĝmn

∂Lreg

∂ĝmn
− 1

2

∂Lreg

∂φ
, (4.10)

rather than eq. (2.14). Consequently

Ueff =
∑

b

(

U2

4
− T ′

2

2

)

≃ −
∑

b

T ′
2

2

[

1 + O
(

κ2T ′
2

)

]

, (4.11)

where the approximate equality neglects κ2(T ′
2)

2 relative to T ′
2. An identical expression

holds for ∆Ueff in terms of ∆U2 and ∆T ′
2.

For instance, in the case considered above, with T1 = ATe
−atφ, Z1 = AZe

−azφ, P =

AP e
−apφ and Q = AQe

−aqφ, eqs. (4.1) through (4.6) for T20, U20, ∆T2 and ∆U2 remain

unchanged (but with d = 4), while the low-energy potential becomes Ueff ≃ −1
2 T

′
2, so

Ueff0 ≃ π|n|(at + az)

√

ATAZ

2
e−(at+az)φ/2 , (4.12)
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and

∆Ueff ≃ −c(at − az)

(2π|n|)4
[

2AT

AZ

]2

e−2(at−az)φ , (4.13)

which assumes mρb ≪ 1.

Again T2
′
0 and Ueff0 both vanish in the scale-invariant case where az = −at = 1

2 , in

which case the dominant loop-generated correction becomes

∆Ueff ≃ c

(

Meφ/2

2π|n|

)4

= c

(

κM

4π|n|gr

)4

, (4.14)

where M2 = 2AT/AZ and we use the bulk field equation eφ = κ2/(4g2r2) (i.e. eq. (4.8)).

Notice that this is both positive and of order 1/r4 when κ, g and M are all of order the

TeV scale — with κM/g ∼ 0.1, say, to allow the semiclassical approximations used — and

so can be much smaller than the TeV scale.

Of course such a small contribution to Ueff is not so impressive unless it is much smaller

than the physical mass of the particle that was integrated out, and this is not generi-

cally so. For example, in the scale-invariant case we have ρb ≃ |n|
√

AZ/(2AT ) e−φ/2 =

(2|n|g r/κ)
√

AZ/(2AT ) and m = m⋆

√

AQ/AP eφ/2 = [κm⋆r/(2g)]
√

AQ/AP , and so

m ≃ 1/ρb ≃ 1/r and ∆Ueff ≃ m4 if all other scales are equal.

However, just as for the case we discussed in the previous sections, the most interesting

situation is where the brane field does not couple at all to the bulk scalar: at = az = ap =

aq = 0. In this case if AT ≃ AQ ≃ M5 and AZ ≃ AP ≃ M3 we have ρb ≃ |n|/M and

m <∼M , and so even though T20 ≃M4 and ∆T2 ≃ m4 are as large as would generically be

expected, both U20 and ∆Ueff can vanish, regardless of how large m and M are.

From a geometrical point of view, this situation where the brane tension is independent

of the bulk dilaton is often obtained when the brane is embedded in a supersymmetric bulk,

since in this case supersymmetry tends to require that the scalar be constant everywhere

in the bulk, and so naturally has a vanishing derivative at the position of any source brane.

The brane in general breaks supersymmetry, but unless the bulk solution is drastically

modified (for example by bulk loops that may change the classical extra-dimensional con-

figuration), the couplings ai between brane and bulk fields are expected to be small. The

previous discussion, then, ensures that Ueff is much smaller than the physical mass of the

particle integrated out.

We end our analysis with a discussion of how bulk loops can affect the previ-

ous arguments.

Bulk loops. But what about bulk loops? In particular, the above arguments explicitly

use the classical bulk equations when integrating out the bulk KK modes to obtain Ueff ,

and these can be expected to be corrected by bulk loops.

When thinking about bulk loops it is useful to keep separate the integration over

KK modes whose wavelength is of order the size, λ ∼ r, of the extra dimensions and

those of much shorter wavelength. In particular, it is the long-wavelength modes whose

contributions can act over the size of the bulk and so potentially modify in an important

way the argument using the classical bulk equations to derive Ueff . We do not calculate

these here, but because these are the modes which dominantly contribute to the Casimir
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energy in the extra dimensions we expect from earlier explicit calculations [19, 24] to find

that they generically contribute of order 1/r4 to the 4D vacuum energy.

More dangerous are the contributions of the short-wavelength modes, with λ ≪ r,

since these can potentially contribute amounts of order 1/λ4 or 1/(λ2r2) to Ueff . However

the effects of such short-wavelength modes can be captured in terms of local terms in

the low-energy bulk effective action, and explicit calculations of the coefficients of these

terms [25] show that they are generically nonzero, but cancel once summed over the field

content of a 6D supermultiplet.

But these explicit calculations do not apply to short-wavelength bulk loops if the

corresponding quantum fluctuation occurs close to the branes, since in this case they can

instead contribute to local effective interactions in the low-energy brane lagrangian [26],

about whose general form less is known. However, the order of magnitude of such effects

can be estimated using the calculations presented here, by making an educated guess as to

the size of their contribution to the regularized action, Sreg, as we now show.

Our main assumption when so doing is that each bulk loop comes with a factor of e2φ,

in addition to any factors of 1/(2π) required by kinematics, if all indices are contracted

using the metric ǧMN = eφgMN . This loop counting follows from the fact, stated above,

that this is the frame for which φ enters undifferentiated into the classical bulk supergravity

action only as a pre-factor: LB = e−2φF(∂Mφ, ǧMN), and so e2φ plays the same role as does

~ in counting loops. Notice that the scale-invariant choice for the regularized brane action

when written in this frame becomes

Lreg = −e−2φ
√

−ǧ
[

AT +
1

2
AZ ǧ

mn∂mσ∂nσ

]

, (4.15)

showing that the tree level contribution for the brane action arises with the same factor,

e−2φ, as for the bulk action.

We therefore expect an n-loop contribution to T1 and Z1 in this frame to be propor-

tional to e2(n−1)φ, which leads to the following loop expansion in the 6D Einstein frame:

T1 ≃ e−φ/2
(

A0
T

+A1
T
e2φ + · · ·

)

and Z1 ≃ e+φ/2
(

A0
Z

+A1
Z
e2φ + · · ·

)

. (4.16)

Following the same steps as above then leads to the following estimate for the leading

corrections to the codimension-2 tension coming from short-wavelength bulk loops:

δT2(φ) = C0
T + C1

T e
2φ + · · · , (4.17)

where C0
T and C1

T are φ-independent constants. Consequently

δUeff ≃ −1

2
δT ′

2 ≃ −C1
T e

2φ ≃ −C1
T

(

κ

2gr

)4

, (4.18)

which again uses eq. (4.8) to trade eφ for 1/r. Being of order 1/r4, is not systematically

larger than the contribution of longer-wavelength bulk loops.

Clearly the same estimates would argue that higher bulk loops are also not dangerous,

because all such loops are suppressed by even more powers of the coupling eφ/2 ≃ κ/(2gr),

that can be extremely small when r is large, such as is required for the SLED proposal

for approaching the cosmological constant problem [5, 6] (for which 2g/κ ≃ 10 TeV while

1/r ≃ 10 meV).
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5 Conclusions

In this paper we analyzed effective theories for codimension two branes, embedded in a

higher dimensional space containing gravity and a scalar field. In order to consistently

define a coupling between the brane and the bulk scalar, we represented the codimension

two source in terms of a regularizing codimension one object, whose small size is determined

by the dynamics of the system. This procedure allowed us to define the tension of the brane,

called T2(φ), and the low energy effective scalar potential, indicated with U2(φ), relevant

below the Kaluza-Klein scale.

We studied how the low energy scalar potential U2(φ) is sensitive to quantum correc-

tions on the brane. In particular we discussed under which conditions threshold effects,

associated with integrating out massive particles on the brane, are suppressed in respect to

naive expectations from dimensional analysis. Threshold effects are reduced when the brane

tension T2(φ) has little or no coupling to the bulk scalar. In this case, although the brane

tension T2(φ) receives potentially large corrections (of the order of the mass of the particle

that is integrated out), the size of the quantum corrected scalar potential U2(φ) that results

is much smaller than T2(φ). This is in agreement with the known situation of codimension

two objects in pure gravity theories (for example conical singularities), in which the brane

tension is constant (but non vanishing) and at the same time the low energy brane potential

is exactly zero allowing for flat on-brane geometries. Our approach, in terms of a low energy

effective theory, allows us to go beyond the situation of pure gravity and quantitatively

analyze how the coupling of the brane with bulk fields influences the low energy potential.

As an illustration, we discussed how technical naturalness can be achieved in a su-

persymmetric example, in which the extra dimensional theory contains further degrees of

freedom required by supersymmetry. In our set-up we considered not only quantum cor-

rections to the low energy action due to brane threshold effects. We also estimate quantum

effects in the bulk, suggesting that their contributions to the low energy effective potential

can be suppressed in respect to the brane ones.

The methods developed in this paper rely on the equations of motion for bulk fields and

on the brane junction conditions, and offer a clear and intuitive geometrical interpretation

of the physics of how the bulk matches to codimension-2 branes, including loop corrections.

They allow a consistent derivation of effective theories for higher codimension objects in a

variety of cases, and the analysis of their sensitivity to quantum effects on the brane and in

the bulk. We hope to further develop these topics in the future, in particular in connection

with supergravity models in six dimensions.
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A The explicit quantum calculation

This appendix gives explicit details about the integrating out of the heavy field ψ. Our

starting point is eq. (3.7), which defines the quantum action, Γ(φ, g), in terms of the

functional integral

exp
[

iΓ(φ, g)
]

=

∫

Dψ exp
[

iS(ψ, φ, g)
]

. (A.1)

This is most easily computed by first differentiating with respect to φ, giving

δΓ

δφ
= e−iΓ

∫

Dψ δS

δφ
eiS

= −1

2

√−g
[

P ′(φ)〈(∂ψ)2〉 +m2
⋆Q

′(φ) 〈ψ2〉
]

= −1

2

√−g
[

P ′

P
〈P (∂ψ)2〉 +

Q′

Q
〈m2

⋆Qψ
2〉
]

, (A.2)

where 〈X(ψ)〉 = e−iΓ
∫

DψX(ψ) eiS . The problem reduces to computing 〈P (∂ψ)2〉 and

〈m2
⋆Qψ

2〉, which can be obtained from the coincidence limit, x′ → x, of the propagator,

G(x, x′) = 〈ψ(x)ψ(x′)〉. Because the result generically diverges in the ultraviolet, we do so

in d spacetime dimensions and take d = 4 − 2ǫ at the end.

The calculation is most easily done with the canonically normalized field, ψR =

P 1/2(φ)ψ, and so P 1/2∂µψ = ∂µψR − 1
2(P ′/P )∂µφψR ≡ DµψR. That is, specializing to

constant φ, write

〈P (φ)ψ(x)ψ(x′)〉 = 〈ψR(x)ψR(x′)〉 = − i

L

∞
∑

k=−∞

∫

ddp

(2π)d
eip·(x−x

′)

p2 + q2k +m2
, (A.3)

where qk = 2πk/L with L = 2πρb and m2 = m2(φ) is given by eq. (3.4). The coincidence

limit of this expression may be written

〈P (φ)ψ2〉 = 〈ψ2
R〉 =

1

L

∫ ∞

0
ds

∞
∑

k=−∞

∫

ddpE

(2π)d
e−s(p

2+q2
k
+m2) , (A.4)

which uses the identity X−1 =
∫∞
0 ds e−sX and performs the Wick rotation to euclidean

signature ddp = iddpE.

In this form the integrations over pµ and the sum over k may be performed explicitly,

using the results

∫

ddpE e
−sp2 =

(π

s

)d/2
and

∞
∑

k=−∞
e−πk

2t = ϑ3(it) , (A.5)

where ϑ3(it) denotes the usual Jacobi theta-function. Using these gives the expression

〈P (φ)ψ2〉 = 〈ψ2
R
〉 =

1

(4π)d/2L

∫ ∞

0

ds

sd/2
e−sm

2

ϑ3

(

4πis

L2

)

=
1

4πLd−1

∫ ∞

0

dt

td/2
e−λt ϑ3 (it) , (A.6)
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where

λ(φ) =
m2(φ)L2

4π
=
m2
⋆L

2Q(φ)

4πP (φ)
. (A.7)

We may repeat this calculation for the derivatives of ψ to compute 〈P (φ)∂mψ∂nψ〉, by

evaluating ∂m∂
′
nG(x, x′) and taking the limit x′ → x. This amounts to inserting a factor

of ipm(−ipn) = pmpn into the integrand of the appropriate expression. The integral over p

and the sum over k may again be performed, using
∫

ddpE pµpν e
−sp2 = ηµν

(π

s

)d/2 1

2s
∞
∑

k=−∞
k2e−πk

2t = − 1

π

∂

∂t

∞
∑

k=−∞
e−πk

2t = − i

π
ϑ′3(it) . (A.8)

Here the prime on ϑ3 denotes differentiation with respect to its argument τ = it. With

these expressions we have

〈P (φ)∂µψ∂νψ〉 = 〈∂µψR∂νψR〉 = ηµν
1

2Ld+1

∫ ∞

0

dt

t(d+2)/2
e−λtϑ3(it) , (A.9)

and

〈P (φ)(∂zψ)2〉 = 〈(∂zψR)2〉 = − i

Ld+1

∫ ∞

0

dt

td/2
e−λtϑ′3(it) . (A.10)

The problem is reduced to the evaluation of the following two one-dimensional integrals:

Iα(λ) :=

∫ ∞

0

dt

tα
e−λt ϑ3(it) , (A.11)

and

Jα(λ) := i

∫ ∞

0

dt

tα
e−λt ϑ′3(it) , (A.12)

whose properties are explored in some detail in appendix B.

An important identity. The properties of the integrals Iα(λ) and Jα(λ) imply an im-

portant identity,

〈X 〉 :=
〈

P (φ) ∂Mψ∂
Mψ +m2

⋆Q(φ)ψ2
〉

= 0 , (A.13)

which holds in dimensional regularization. This result follows from eqs. (A.6), (A.9) and

(A.10), written in the form

〈m2
⋆Q(φ)ψ2〉 =

λ

Ld+1
Id/2(λ)

〈P (φ) ∂µψ∂
µψ〉 =

d

2Ld+1
I1+d/2(λ)

〈P (φ) (∂zψ)2〉 = − 1

Ld+1
Jd/2(λ) , (A.14)

which allow eq. (A.13) to be written

〈X 〉 =
1

Ld+1

[

λId/2(λ) +
d

2
I1+d/2(λ) − Jd/2(λ)

]

. (A.15)

This combination is shown to vanish identically in appendix B.
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The massless limit. Finally, we evaluate the stress energy,
〈

Tmn

〉

=
〈

P (φ) ∂mψ ∂nψ
〉

,

explicitly in the limit when m⋆ = 0. In this limit the stress energy is given by

〈

Tµν

〉

=
Cd
Ld+1

ηµν and
〈

Tzz

〉

=
Cz
Ld+1

, (A.16)

where Cd = 1
2 I1+d/2(0) and Cz = −Jd/2(0) = −d

2 I1+d/2(0). Keeping in mind that I∞α (0) =

0 when Reα > 1
2 (and so in particular when α = 1 + d/2), this gives (using the results of

appendix B)

− Cz
d

= Cd =
1

2
If1+d/2(0) =

1

π(d+1)/2
Γ

(

d+ 1

2

)

ζ(d+ 1) , (A.17)

which may be explicitly evaluated when d = 4 to give C4 = 3 ζ(5)/(4π2) ≃ 7.68.

B The functions Iα(z) and Jα(z)

The previous appendix shows the utility of defining the following functions

Iα(λ) :=

∫ ∞

0

dt

tα
e−λt ϑ3(it) , (B.1)

and

Jα(λ) := i

∫ ∞

0

dt

tα
e−λt ϑ′3(it) , (B.2)

where, as before, the prime denotes differentiation with respect to τ = it. This appendix

collects many useful properties of these two functions.

Ultraviolet divergent parts. To understand the convergence of the integrals we require

the following asymptotic forms [21] for ϑ3(it),

ϑ3(it) = 1 + 2 e−πt + · · · when t→ ∞

and ϑ3(it) =
1√
t

[

1 + 2 e−π/t + · · ·
]

when t→ 0 . (B.3)

These imply that the integral defining Iα(λ) converges as t→ ∞ for any α when Reλ > 0,

and for Reα > 1 if Reλ = 0. By contrast, the exponential falloff of the function ϑ′3(it)

for large t ensures the integral defining Jα(λ) converges for large t for any α if Reλ > −π.

On the other hand, convergence of Iα(λ) for t → 0 requires Reα < 1
2 , while the small-t

convergence of Jα(λ) requires Reα < −1
2 .

Our eventual applications make us particularly interested in the cases where α = d/2

or α = (d+ 2)/2, where d is a positive integer (with d = 4 being particularly interesting).

Although Reλ > 0 is sufficient to ensure the convergence of the integrals for all α as

t → ∞, the above asymptotic forms show that Iα(λ) in general diverges as t→ 0 for all d

of interest. This divergence represents the ultraviolet divergence of the physical quantities

under study.

It is useful to isolate this divergence by writing Iα = I∞α + Ifα (and ditto for Jα),

where the ‘infinite’ parts are obtained by replacing ϑ3(it) → 1/
√
t and the ‘finite’ parts
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Figure 3. A plot of the functions I2(λ) (left) and I3(λ) (right) vs λ.

are obtained by replacing ϑ3(it) → ϑ3(it) − 1/
√
t. Regularizing the divergent parts using

dimensional regularization then gives

I∞α (λ) =

∫ ∞

0

dt

tα+ 1
2

e−λt = λα−
1
2 Γ

(

1

2
− α

)

, (B.4)

and

J∞
α (λ) = −1

2

∫ ∞

0

dt

tα+ 3
2

e−λt = −1

2
λα+ 1

2 Γ

(

−1

2
− α

)

, (B.5)

where Γ(z) is Euler’s generalized factorial function, satisfying zΓ(z) = Γ(z + 1) and Γ(k+

1) = k! for k a nonnegative integer. Notice that if α = d/2 or α = (d+2)/2, this expression

has poles when d is positive and odd (and so when the total dimension of spacetime on the

codimension-1 brane, d+1, is even). As is often the case in dimensional regularization, the

one-loop divergences happen to be finite when d is even and positive (so d+ 1 is odd), and

in particular for the cases of practical interest: α = d/2 = 2 − ǫ or α = (d/2) + 1 = 3 − ǫ.

Once these are taken out the remaining integrals

Ifα(λ) :=

∫ ∞

0

dt

tα
e−λt

[

ϑ3(it) −
1√
t

]

Jfα(λ) :=

∫ ∞

0

dt

tα
e−λt

[

iϑ′3(it) +
1

2 t3/2

]

, (B.6)

converge exponentially for small t.

A useful identity. A very useful property of these integrals follows by integrating by

parts in the definition of Jα(λ), leading to

Jα(λ) = λIα(λ) + αIα+1(λ) if Reα < −1

2
, Reλ > 0 . (B.7)

Here the assumptions for Reα and Reλ are required to ensure the vanishing of the

surface term. Since this identity proves very useful in the main text, we now show that
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it applies even for α not in the above regions, provided that the divergences encountered

are dimensionally regularized. Although we now demonstrate this in detail, the conclu-

sion also follows from eq. (B.7) by analytic continuation in a potentially wider set of

regularization schemes.

We wish to show that the following quantity vanishes:

〈X 〉 =
1

Ld+1

[

λId/2(λ) +
d

2
I1+d/2(λ) − Jd/2(λ)

]

. (B.8)

To this end notice first that the potentially divergent parts cancel identically from this

combination, since

λI∞d/2 +
d

2
I∞1+d/2 − J∞

d/2 = λd+1/2

[(

d

2
+

1

2

)

Γ

(

−1

2
− d

2

)

+ Γ

(

1

2
− d

2

)]

, (B.9)

which vanishes by virtue of the identity zΓ(z) = Γ(z + 1), specialized to z = −1
2 − d

2 . The

finite parts similarly cancel, since they may be written

λIf
d/2

+
d

2
If
1+d/2

− Jf
d/2

=

∫ ∞

0

dt

t1+d/2
e−λt

[(

λt+
d

2

)(

ϑ3 −
1√
t

)

− t

(

dϑ3

dt
+

1

2 t3/2

)]

= −
∫ ∞

0
dt

d

dt

[

e−λt

td/2

(

ϑ3 −
1√
t

)]

, (B.10)

which vanishes because the integrand vanishes exponentially quickly as both t → 0 and

t → ∞. (If λ = 0 then the limit t→ ∞ still vanishes like a power of 1/t provided d > 0.)

The special case λ = 0. The case where Ifα is evaluated at λ = 0 arises in the main

text, and can be evaluated explicitly. In this case we have

Ifα(0) =

∫ ∞

0

dt

tα

[

ϑ3(it) −
1√
t

]

=

∫ ∞

0
dt tα−

3
2

[

ϑ3(it) − 1
]

, (B.11)

where we change variables t→ 1/t and use the identity

ϑ3

(

i

t

)

=
√
t ϑ3(it) . (B.12)

The remaining integral may be evaluated using the identity,

∫ ∞

0

dt

t
ts/2
[

ϑ3(it) − 1
]

=
2

πs/2
Γ
(s

2

)

ζ(s) , (B.13)

where ζ(s) is Riemann’s zeta function, to give

Ifα(0) =
2

πα−
1
2

Γ

(

α− 1

2

)

ζ
(

2α − 1
)

. (B.14)
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The special case α = 2. The full expression for Ifα(λ) may also be obtained for the

special value α = 2, which is of practical interest in the case d = 4. In this case we use

the definition

ϑ3(it) =

∞
∑

k=−∞
e−πk

2t (B.15)

and the great convergence properties of the sums and integrals to reverse the order of

summation and integration, leading to

Ifα(λ) =

∫ ∞

0

dt

tα

[

ϑ3(it) −
1√
t

]

e−λt

=

∫ ∞

0
dt tα−

3
2

[

ϑ3(it) − 1
]

e−λ/t

= 2

∞
∑

n=1

∫ ∞

0
dt tα−

3
2 e−πn

2t−λ/t

= 4π(1−2α)/4λ(2α−1)/4
∞
∑

n=1

n(1−2α)/2Kα− 1
2

(√
4πn2λ

)

, (B.16)

where Kν(z) denotes the modified Bessel function of the second kind, Kν(z) = Yiν(z). In

the case α = 2 this sum can be performed explicitly in terms of the Digamma function,

Lis(z) ≡
∞
∑

n=1

zn

ns
, (B.17)

to give

If2 (λ) =
1

π

[√
4πλ Li2

(

e−
√

4πλ
)

+ Li3

(

e−
√

4πλ
)]

. (B.18)

Asymptotic forms. To identify asymptotic forms for large and small λ we write F (t) ≡
ϑ3(it) − t−1/2, in terms of which the finite integral becomes

Ifα(λ) = λα−1

∫ ∞

0

du

uα
e−uF (u/λ)

≈ 2λα−
1
2

∫ ∞

0
du u−α−

1
2 e−u−πλ/u ∝ λα−

1
2 (πλ)−α−

1
4 e−2

√
πλ when λ≫ 1

≈ λα−1

∫ ∞

0
du u−α e−u = λα−1Γ

[

1 − α
]

when λ≪ 1 . (B.19)

This uses the asymptotic forms F (u/λ) ≈ 2 e−πλ/u
√

λ/u when λ≫ 1 and F (u/λ) ≈ 1 when

λ≪ 1. The large-λ limit is evaluated using the saddle-point approximation, for which

∫

du f(u) e−h(u) ∝ f(uc)
√

h′′(uc)
e−h(uc) , (B.20)

where uc is defined by the condition h′(uc) = 0. This is uc =
√
πλ in the case of interest,

for which h(u) = u+ πλ/u.
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The other integral of interest is

Jfα(λ) ≡
∫ ∞

0

dt

tα
e−λt

[

iϑ′3(it) +
1

2 t3/2

]

, (B.21)

so writing G(t) ≡ iϑ′3(it) + (2 t3/2)−1 the integral becomes

Jfα(λ) = λα−1

∫ ∞

0

du

uα
e−uG(u/λ)

≈ −λα+ 1
2

∫ ∞

0
du u−α−

3
2 e−u−πλ/u ∝ λα+ 1

2 (πλ)−α−
5
4 e−2

√
πλ when λ≫ 1

≈ 1

2
λα+ 1

2

∫ ∞

0
du u−α−

3
2 e−u =

1

2
λα+ 1

2 Γ

[

−1

2
− α

]

when λ≪ 1 , (B.22)

which uses the asymptotic forms G(u/λ) ≈ −(λ/u)3/2e−πλ/u when λ ≫ 1 and G(u/λ) ≈
1
2 (λ/u)3/2 when λ≪ 1.

Infrared singularities for small λ. The small-λ limit involves some subtleties when

α is in the regime of practical interest, α = d
2 = 2 − ǫ. Naively specializing the above

asymptotic limits to this case gives

If2 (λ) ∼ λΓ(−1 + ǫ) = −λ
ǫ

+O(1) , (B.23)

which diverges as ǫ → 0. Because we know that If2 converges absolutely for nonzero

positive λ by construction, this divergence in the small-λ limit represents an infrared mass

singularity for small m which invalidates an expansion in powers of λ.

To isolate this singularity explicitly, it is worth multiply differentiating the integral

expression for If2 (λ) with respect to λ, to obtain

d2If2
dλ2

=

∫ ∞

0
dt e−λt

[

ϑ3(it) −
1√
t

]

=
1

λ

∫ ∞

0
du e−u F (u/λ)

≈ 1

λ

∫ ∞

0
du e−u =

1

λ
when λ≪ 1 , (B.24)

which when integrated implies If2 (λ) ≈ λ(ln λ− 1) +Aλ+B when λ≪ 1, where A and B

are integration constants.

The constants A and B may be obtained by going back to the original integral defining

If2 (λ) and numerically integrating in the small-λ limit. This leads to

A =

[

dIf2
dλ

− lnλ

]

λ=0

= −
∫ ∞

0

dt

t

[

ϑ3(it) −
1√
t
− t

1 + t

]

≃ −1.94 , (B.25)

which uses the representation

lnλ =

∫ ∞

0
du

[

1

u+ 1
− 1

u+ λ

]

= (λ− 1)

∫ ∞

0

dt

(1 + t)(1 + λt)
, (B.26)

where t = 1/u. Similarly,

B = If2 (0) =

∫ ∞

0

dt

t2

[

ϑ3(it) −
1√
t

]

=
ζ(3)

π
≃ 0.38 . (B.27)
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C Supergravity equations of motion

This appendix summarizes the equations of motion for the bosonic part of 6D chiral gauged

supergravity, and uses these to trace how the arguments of the main text change when

applied to this case. The action for the theory is given (in the 6D Einstein frame and for

the case of vanishing hyperscalars — Φi = 0) by [10]

LB√−g = − 1

2κ2
gMN

[

RMN + ∂Mφ∂Nφ
]

− 2g2

κ4
eφ

−1

4
e−φ FMNF

MN − 1

2 · 3! e
−2φGMNPG

MNP , (C.1)

where we specialize to a single gauge field, FMN = ∂MAN − ∂NAM and Kalb-Ramond field,

GMNP = ∂MBNP +∂NBPM +∂PBMN +(APFMN terms). g and κ are coupling constants that

respectively have dimension (mass)−1 and (mass)−2.
The field equations obtained from this action are:

�φ+
κ2

6
e−2φ GMNPG

MNP +
κ2

4
e−φ FMNF

MN − 2 g2

κ2
eφ = 0 (dilaton)

DM

(

e−2φGMNP

)

= 0 (2-Form)

DM

(

e−φ FMN

)

+ e−2φGMNPFMP = 0 (Maxwell)

RMN + ∂Mφ∂Nφ+
κ2

2
e−2φ GMP QGN

P Q + κ2e−φ FMPFN

P +
1

2
(�φ) gMN = 0 . (Einstein)

(C.2)

An important feature of these equations is their invariance under the replacement [22]

eφ → λeφ and gMN → λ−1gMN , (C.3)

with all other fields held fixed. Also notice that evaluating the action, eq. (C.1) using the

dilaton and Einstein equations of eqs. (C.2), implies the action evaluates to

SB cl = SGH +
1

2κ2

∫

d6x
√−gcl �φcl , (C.4)

where SGH denotes the Gibbons-Hawking term, as in the main text.

Compactified solutions. For static solutions compactified to two dimensions supported

by Maxwell flux our interest is in field configurations of the form

ds2 = e2W ηµν dxµdxν + dρ2 + e2Bdθ2 and AM dxM = Adθ , (C.5)

with component functions, W , B, φ and A, depending only on ρ. Denoting differentiation

with respect to ρ by primes, the field equations reduce to the following set of coupled

partial differential equations. The Maxwell equation is:

A′′ + (4W ′ −B′ − φ′)A′ = eB−4W+φ
(

e−B+4W−φA′
)′

= 0 , (C.6)
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The dilaton equation is:

φ′′ + (4W ′ +B′)φ′ +
κ2

2
e−2B−φ(A′)2 − 2g2

κ2
eφ = 0 , (C.7)

The (µν) Einstein equation is:

W ′′ +W ′(4W ′ +B′) − κ2

4
e−2B−φ(A′)2 +

g2

κ2
eφ = 0 . (C.8)

The (ρρ) Einstein equation is:

4W ′′ +B′′ + 4 (W ′)2 + (B′)2 + (φ′)2 +
3κ2

4
e−2B−φ(A′)2 +

g2

κ2
eφ = 0 . (C.9)

The (θθ) Einstein equation is:

B′′ +B′(4W ′ +B′) +
3κ2

4
e−2B−φ(A′)2 +

g2

κ2
eφ = 0 . (C.10)

Notice that the combination 4(µν) + (θθ) − (ρρ) of the three Einstein equations can

be rewritten as the constraint,

12(W ′)2 + 8W ′B′ − (φ′)2 − κ2
(

e−4W−φ/2f
)2

+
4 g2

κ2
eφ = 0 , (C.11)

which uses the solution to the Maxwell equation, A′ = f eB−4W+φ, with f constant. This

differs from the constraint obtained for the pure massless scalar-tensor theory of the main

text only by the last two terms.

Jump conditions. Using the same choice for the regularized brane action as in the main

text, eq. (2.10), implies the same junction conditions as were found there, eqs. (2.9):

lim
ρ→0

(

eB+dW∂ρφ
)

=
κ2T ′

2

2π
, lim

ρ→0

(

eB+dW∂ρW
)

=
κ2U2

2πd
(C.12)

and lim
ρ→0

(

eB+dW∂ρB
)

= 1 − κ2

2π

[

T2 +

(

d− 1

d

)

U2

]

.

with

T2 = −
(

2πρb
4

)

ĝµνTµν and U2 = 2πρb ĝ
θθTθθ , (C.13)

as before (using d = 4).

The important new difference is that the quantity U2 that appears here is not related to

the brane contribution to the very-low-energy effective potential by Ueff = 1
d

∑

b U2, because

the bulk action satisfies eq. (C.4) instead of SB = SGH . As a consequence, classically

integrating out the bulk KK modes in this case instead gives (with d = 4) [12]

Leff(φ, ρb) = 2πρb
∑

b

[

Lreg −
1

2
ĝmn

∂Lreg

∂ĝmn
− 1

2

∂Lreg

∂φ

]

or Ueff =
∑

b

(

U2

4
− T ′

2

2

)

, (C.14)

and precisely the same for ∆Leff as a function of ∆Lreg and its derivatives.
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Constraint. The constraint relating U2 and T2 is now derived by eliminating the deriva-

tives W ′, B′ and φ′ using the jump conditions. A′ can similarly be related to the corre-

sponding brane current, δSreg/δAM , using its jump condition [12, 16]. However, since the

last two terms of eq. (C.11) are suppressed relative to the first three by positive powers

of ρb they may be neglected for small ρb, as can contributions of order ρ2
bR [12]. As a

consequence U2 and T2 are related to one another by the same constraint, eq. (2.16), as

was derived in the main text for massless scalar-tensor gravity:

U2

[

4π

κ2
− 2T2 −

(

d− 1

d

)

U2

]

−
(

T ′
2

)2 ≃ 0 . (C.15)

This implies that ρb(φ) is to good approximation obtained by the same condition, U2 ≃ 0,

after which eq. (C.14) gives Ueff(φ) with U2(φ) = U2(φ, ρb(φ)) and T2(φ) = T2(φ, ρb(φ))

related by eq. (C.15).
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